Toric Generalized Characteristic Polynomials
نویسنده
چکیده
We illustrate an efficient new method for handling polynomial systems with degenerate solution sets. In particular, a corollary of our techniques is a new algorithm to find an isolated point in every excess component of the zero set (over an algebraically closed field) of any n by n system of polynomial equations. Since we use the sparse resultant, we thus obtain complexity bounds (for converting any input polynomial system into a multilinear factorization problem) which are close to cubic in the degree of the underlying variety — significantly better than previous bounds which were pseudo-polynomial in the classical Bézout bound. By carefully taking into account the underlying toric geometry, we are also able to improve the reliability of certain sparse resultant based algorithms for polynomial system solving.
منابع مشابه
Zonotopes, toric arrangements, and generalized Tutte polynomials
We introduce a multiplicity Tutte polynomial M(x, y), which generalizes the ordinary one and has applications to zonotopes and toric arrangements. We prove that M(x, y) satisfies a deletion-restriction recurrence and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial M(x, y), li...
متن کاملMilnor fibers over singular toric varieties and nearby cycle sheaves
We propose a new sheaf-theoretical method for the calculation of the monodromy zeta functions of Milnor fibrations. As an application, classical formulas of Kushnirenko [11] and Varchenko [23] etc. concerning polynomials on C will be generalized to polynomial functions on any toric variety.
متن کاملA Tutte Polynomial for Toric Arrangements
We introduce a multiplicity Tutte polynomial M(x, y), with applications to zonotopes and toric arrangements. We prove that M(x, y) satisfies a deletion-restriction recursion and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial M(x, y), likewise the corresponding polynomials fo...
متن کاملOn generalized Lucas sequences
We introduce the notions of unsigned and signed generalized Lucas sequences and prove certain polynomial recurrence relations on their characteristic polynomials. We also characterize when these characteristic polynomials are irreducible polynomials over a finite field. Moreover, we obtain the explicit expressions of the remainders of Dickson polynomials of the first kind divided by the charact...
متن کاملCo-centralizing generalized derivations acting on multilinear polynomials in prime rings
Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ $(=Z(U))$ the extended centroid of $R$. Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear polynomial over $C$ which is noncentral valued on $R$. Suppose that $G$ and $H$ are two nonzero generalized derivations of $R$ such that $a(H(f(x))f(x)-f(x)G(f(x)))in ...
متن کامل